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ABSTRACT: Complex infrastructure systems, such as transportation and communication networks,
consist of many interconnected and interdependent elements that exhibit behavior that is difficult to
predict. Researchers have developed System of Systems (SoS) approaches to model and understand the
behavior of such complex systems. However, creating SoS models requires combining multiple complex
models to describe the system’s overall behavior, leading to many open questions about the influence of
specific parameters on the results, how uncertainties propagate through the system, and what level of
model detail is required. To address these challenges, this paper proposes a network approach to study
the properties of computational SoS models for infrastructure systems. The proposed methodology
utilizes network analysis to categorize the system and identify critical components, providing insights
into the complexity and uncertainty of the system. Furthermore, theoretical concepts from network
analysis are used to demonstrate how uncertainties propagate through the system and identify critical
model parameters. The approach is applied to a multi-hazard transportation problem for a road network
located in Switzerland. The results show that the network representation of SoS models provides a
powerful tool for analyzing the behavior of infrastructure systems and can provide insights into how
uncertainties propagate and which system components are critical. This approach can help researchers
derive further knowledge about complex systems, provide a means for making informed decisions
regarding system design and development, and help gain new insights into the behavior of SoS models.

1. INTRODUCTION

Complex systems comprise many interconnected
and interdependent elements that exhibit behavior
that is difficult to predict. Infrastructure systems
like transportation and communication networks
are prime examples of complex systems. They con-
sist of many different parts that are embedded in
space and interact with their environment, making
them highly susceptible to natural hazards and other
external factors (Hackl and Adey, 2019b). Infras-
tructure systems can experience complex dynam-
ics, and as a result, the failure of even a single com-
ponent in these systems can have a cascading im-
pact on the entire system, even at remote locations
(Hackl and Adey, 2019a).

To model and understand the behavior of com-
plex infrastructure systems, researchers have devel-

oped "Systems of Systems" (SoS) approaches that
focus on modeling the interactions and dependen-
cies among the individual components and subsys-
tems (Hall et al., 2016; Thacker et al., 2017; Zorn
et al., 2020). This modeling framework captures
the behavior and interactions of multiple interde-
pendent infrastructure systems or subsystems and
the relationships between them. It involves a hi-
erarchical and modular approach that considers the
system as a collection of interconnected systems.
Each subsystem is modeled separately and then in-
tegrated into a more extensive (network) model that
accounts for the dependencies and interdependen-
cies between them. SoS models aim to provide a
holistic view of the infrastructure system and its
dynamic behavior under various operating condi-
tions, including failures, natural hazards, and other
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disruptions (Hackl et al., 2018). They are typi-
cally used for assessing the resilience of infrastruc-
ture systems, identifying vulnerabilities and risks,
and developing strategies to improve system per-
formance and robustness (Sanderson et al., 2022).

However, creating SoS models requires combin-
ing multiple complex models to describe the sys-
tem’s overall behavior. This leads to many open
questions, such as how influential specific param-
eters are for the results, how uncertainties propa-
gate through the SoS, what the most important pa-
rameters are, and what level of model detail is re-
quired. Additionally, running large-scale SoS mod-
els is computationally intense, making probabilistic
and sensitivity analyses very costly. Additionally,
model extensions are expensive and require careful
consideration. Therefore, new insights into these
complex system modeling approaches are neces-
sary to derive further knowledge.

To address these challenges, this paper proposes
a network approach to study the properties of com-
putational SoS models for infrastructure systems.
Using simple network measures, the system can be
categorized and critical components identified, pro-
viding insights into the complexity and uncertainty
of the system. Furthermore, theoretical concepts
from network analysis are used to demonstrate
how uncertainties propagate through the system and
identify the critical model parameters. This ap-
proach can help to derive further knowledge about
complex systems, provide a means for making in-
formed decisions regarding system design and de-
velopment, as well as help researchers to gain new
insights into the behavior of SoS models.

2. METHODOLOGY
In this work, network analysis is utilized to de-

scribe the mathematical relationships among the
System of Systems (SoS) models for infrastructure
systems. Networks are a powerful tool for model-
ing complex systems as they reduce the system’s
complexity into a tractable mathematical represen-
tation where properties of interest are represented
as nodes and their relationships among each other
as edges. Nodes and edges can have additional
attributes such as labels, weights, or other types
which can represent features of the real-world sys-

tem. Furthermore, networks are not limited to a par-
ticular system but can be applied very generally.

In this work, networks are used to describe the
mathematical relationships among the underlying
physical models of the SoS representation. Nodes
represent parameters, values, and equations, while
edges represent how they are connected to each
other. For example, a simple equation (Eq X) such
as Eq X : A+B =C can be represented in the net-
work as nodes A, B, C, and Eq X connected by
edges, where the edge from A and B to Eq X to
C represents the mathematical relationship.

EqX
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Dt
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F

t

Figure 1: Example network representation. The red
model, A+B =C, is connected with the orange model,
Eq y. variables D and E depend on the variable t.

A multi-network approach is used to distinguish
between different hierarchies within the SoS mod-
els. The edges in the network can represent differ-
ent types of relationships, including model internal
relationships based on physical equations, edges
that are used as input to other system models, and
edges that represent common variables that appear
over multiple models. The nodes within a model
are labeled together to identify the model they be-
long to.

The outcome of this methodology is a network
representation of the SoS’s physical models in
terms of nodes and edges. One limitation of this
approach is that only functional relationships are
considered, and no distinction is made about the
mathematical operators. Nonetheless, the network
representation of SoS models provides a power-
ful tool for analyzing the behavior of infrastructure
systems and can provide insights into how uncer-
tainties propagate and which system components
are critical.
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3. APPLICATION
The methodology presented in this work is ap-

plied to a System of Systems (SoS) model proposed
by Hackl et al. (2018). In the paper, the authors
studied a multi-hazard transportation problem for
a road network located in Switzerland to quantify
the risk and resilience against flooding and land-
slides. The model considers both temporal and spa-
tial changes throughout the hazard event, as well as
the time needed for restoration.

The SoS model proposed by Hackl et al. (2018) is
based on simple physical modules with a limited set
of input parameters given in their paper’s appendix.
The SoS model is comprised of nine interdependent
model categories, including rainfall, runoff, flood,
landslide, object fragility, object functionality, traf-
fic, direct costs, and indirect costs, with the aim to
capture the complex dynamics of transportation in-
frastructure during a hazard event and the associ-
ated costs of interruptions of service.

The outlined methodology is used to derive a
network representation of this SoS model. Since
the simulation is sequential, a directed network
representation is used, i.e., the edges are directed
to capture the flow of information from one vari-
able/module to the next. The nodes in the net-
work represent the different parameters, values, and
equations used in the SoS model, while the edges
represent the relationships among them. A tenth
category is introduced to address general variables
that are used throughout the modeling process, such
as DTM grid cells and time.

Applying this network-based approach, a net-
work with 140 nodes and 265 edges could be de-
rived from the SoS’s physical models illustrated in
Figure 2.

The resulting network model provides the basis
for gaining insight into the SoS model’s complex-
ity and allows for identifying critical components
and relationships. Simple network measures such
as in or out-degree or betweenness centrality can be
used to categorize the system and determine impor-
tant properties. Uncertainty propagation can also
be theoretically studied using the network diffusion
model, and critical components of the system can
be identified, which will be explored in the follow-
ing sections.

1

2

3

4

5

6

6b

7
7b

8

9

10

11

12

13

14

15a

15b

15c

15d

16

17

18

19

20

21

22

23

24

1

10

100

101

102

103

104

105

106

107

108
109

11

110

111

112

113

114

115

12

13

14

15

16

17
18

19
2

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

3536

38
39

4

40

41

42

43

44

45

46

47

48

49

5

50

51
52

53

54

55 56

57

58
59

60
61

62

63

64

65

66

67

68

69

7

70

71

72

73

74

75

76

77

78

79

8

80

81

82

83

84

85

87

88

89

9

90

91

92

93
94

95

96
97

98

99

general rainfall runoff

flood landslide damage

loss traffic direct indirect

Figure 2: Network representation of the SoS model.

3.1. Community detection
Community detection in network science is the

process of identifying groups of nodes within a net-
work that are more densely connected to each other
than to the rest of the network. These groups of
nodes are called communities or clusters. Com-
munity detection is a fundamental task in net-
work analysis, as it can reveal a network’s under-
lying structure and organization and provide in-
sights into the function and behavior of the sys-
tem it represents. Identifying communities in an
arbitrary network can pose computational chal-
lenges as the number of communities, if existent,
is usually uncertain, and their sizes and densities
may vary. For this analysis, modularity maximiza-
tionNewman (2004) was used. It involves parti-
tioning a network into communities or clusters that
have a higher density of connections within them-
selves compared to connections between different
communities.

Figure 3 displays the identified communities in
the network. A total of seven communities were
identified, with a good fit observed between the
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community assignment and the different physical
models, given that the community assignment is
solely based on the topology. Some models were
split into multiple communities, particularly the in-
put and output nodes of the models. Notably, the
traffic model was partitioned into two parts, with
the network and origin-destination component of
the traffic model (yellow) forming one commu-
nity and the link flow (light green) forming another
community. The link flow was also found to be
in the same community as the costs for travel pro-
longation. Similar behavior was observed for other
models.

The application of community detection is of sig-
nificant interest as it provides insights into which
models are closely linked in terms of interactions
and shared variables, thereby guiding the consider-
ation of which models should be analyzed together
rather than independently.
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Figure 3: Detected communities.

3.2. Node Centrality
Node centrality is a concept in network science

that measures the relative importance of a node
within a network. It reflects the idea that some
nodes in a network are more central or more im-
portant than others. Centrality is a crucial concept

in understanding the structure and function of net-
works, as it can reveal which nodes are likely to
have the most influence or play the most critical
roles in the network. There are several types of
node importance measures, each capturing a dif-
ferent aspect of node centrality. In this work, the
following centralities are considered:

In-degree centrality is defined as the number of
incoming edges or connections to a node in a di-
rected network. Nodes with high in-degree central-
ity are considered more important or influential in
the network, as they receive more connections or
information from other nodes. In-degree centrality
is often used to identify key nodes or hubs in net-
works, as well as to understand patterns of informa-
tion flow within the network. It is particularly use-
ful in applications such as social network analysis,
where nodes may represent individuals and edges
may represent social ties or relationships.

Out-degree centrality is a measure of the num-
ber of edges that are directed outwards from a node
in a directed network. It is the number of outgo-
ing links or edges from a node. In other words, it
measures the extent to which a node is connected
to other nodes in the network by sending informa-
tion or resources to them. Nodes with high out-
degree centrality are typically considered important
in terms of dissemination or influence in a network.

Betweenness centrality quantifies how often a
node lies on the shortest path between other pairs of
nodes in the network. Nodes with high betweenness
centrality are crucial for the overall connectivity
and efficiency of the network, as they are respon-
sible for maintaining communication and facilitat-
ing the transfer of information or resources between
different groups of nodes. Hence, betweenness cen-
trality can help identify important nodes that act as
bottlenecks or bridges in a network.

Eigenvector centrality is a measure that captures
both the number and quality of a node’s connec-
tions, where the quality is measured by the cen-
trality of the nodes to which it is connected. A
node with high eigenvector centrality is connected
to other nodes that are themselves highly central
and may be important for spreading influence or
controlling the flow of information in the network.
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Figure 4: Node impotency measures.

They may be more likely to have a more significant
impact on the overall structure or behavior of the
network.

Figure 4 illustrates the four centrality measures
applied to the network, with the top five most im-
portant nodes listed in Table 1. The hydraulic
model (Node Eq6) and the object fragility model
(Node Eq9) have the highest number of input pa-

Table 1: Top five most important nodes

Rank in-deg out-deg betw eigenv
1 Eq6 47 23 Eq15a
2 Eq23 12 Eq5 73
3 Eq16 10 Eq9 74
4 Eq9 24 25 Eq23
5 90 61 19 Eq21
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Figure 5: Diffucion process over time for node 59 (bridge pier width).

rameters. In contrast, the time variable (Node
12) and infrastructure objects (Node 47) are the
most connected nodes, with 24 and 23 relation-
ships, respectively. Betweenness centrality analy-
sis revealed that the hydrograph (Node 23) and the
corresponding runoff model (Node Eq5) have the
highest centrality, followed by the object fragility
model (Node Eq9). Eigenvalue centrality analysis
identified clusters of highly central nodes around
the user equilibrium assignment model (Eq15a) and
the indirect costs for traveling models (Eq21, Eq22,
Eq23).

3.3. Uncertainty propagation via diffusion
Diffusion on networks for uncertainty quantifica-

tion is a method that leverages the structure of a net-
work to propagate uncertainty from input parame-
ters to model outputs. The method involves sim-
ulating the diffusion of information or influences
through the network, where each node in the net-
work represents a model variable or parameter, and
the edges represent their dependencies or relation-
ships.

The diffusion process starts with the input nodes,
which are assumed to have a probability distribu-
tion that captures the uncertainty or variability in
their values. The probability distribution is then

propagated through the network using a diffusion
model, such as a random walk or a diffusion equa-
tion, which considers the network topology and the
strength of the relationships between nodes. The
diffusion process converges to a stationary distri-
bution, representing the output nodes’ probability
distribution, and provides a measure of uncertainty
or variability in the model predictions.

The diffusion on networks method has several
advantages for uncertainty quantification compared
to traditional methods, such as Monte Carlo sim-
ulation or sensitivity analysis. First, it can han-
dle high-dimensional models with many input vari-
ables, as the complexity of the problem is reduced
by exploiting the network structure. Second, it can
capture the effect of correlations and dependencies
between variables, which are often neglected in tra-
ditional methods. Third, it can provide a measure
of the importance of each variable or parameter in
the model based on its contribution to the output un-
certainty. This information can be used for model
calibration, optimization, or design.

The diffusion process depicted in Figure 5
demonstrates information propagation over time for
a chosen node. At the initial time step t = 0, the in-
formation is located at its source node and shown
in red. As the diffusion process progresses, the in-
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Figure 6: Aggregated visiting probabilities.

formation is distributed equally among the succes-
sive nodes. The intensity of the colors in Figure 5
represents the node’s influence by the initial node,
with darker colors indicating a higher level of influ-
ence. As the diffusion process continues, a station-
ary state will be reached.

Figure 6 depicts the aggregated temporal net-
work for the diffusion processes associated with
Node 11 (precipitation), Node 12 (time), and Node
59 (bridge pier width). The precipitation variable is
utilized as the source event to initiate flooding and
landslides, and thus it exhibits the most significant
influence on the runoff and landslide model. The
time variable is input to several other nodes, as dis-
cussed in Section 3.2, and therefore diffuses evenly
across all models. On the other hand, the bridge
pier width variable has a strong local impact on the
damage model, whereas other models are less af-
fected.

4. CONCLUSIONS

In conclusion, the study of complex infrastruc-
ture systems requires a holistic view of the system’s
behavior and interactions under various operating
conditions, including failures, natural hazards, and
other disruptions. The Systems of Systems (SoS)
approach provides such a framework by modeling
the interactions and dependencies among individ-
ual components and subsystems. However, creat-
ing SoS models requires combining multiple com-
plex models, leading to many open questions about

the importance of specific parameters, how uncer-
tainties propagate through the SoS, what the criti-
cal parameters are, and what level of model detail
is required.

To address these challenges, this paper proposes
a network approach to study the properties of com-
putational SoS models for infrastructure systems.
The proposed methodology uses network analysis
to reduce the system’s complexity into a tractable
mathematical representation, where properties of
interest are represented as nodes and their relation-
ships among each other as edges. This approach al-
lows the system to be categorized and critical com-
ponents identified, providing insights into the com-
plexity and uncertainty of the system. Furthermore,
the proposed approach can help researchers to gain
new insights into the behavior of SoS models and to
make informed decisions regarding system design
and development.

The methodology presented in this paper is ap-
plied to a System of Systems (SoS) model for
a multi-hazard transportation problem in Switzer-
land. The SoS model is based on simple physical
modules with a limited set of input parameters, and
the proposed network approach provides a network
representation of the SoS model. The network rep-
resentation allows the identification of critical com-
ponents, provides insights into how uncertainties
propagate and can help assess the system’s risk and
resilience against flooding and landslides.

Despite the promising results presented in this
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paper, there are some limitations that should be
considered. Firstly, the methodology proposed in
this work is based on simplifications and abstrac-
tions of the underlying physical models of infras-
tructure systems. This means that some aspects of
the system behavior may be lost or not fully cap-
tured by the network approach, particularly when
dealing with highly nonlinear or complex models.
Secondly, the network approach relies on the as-
sumption that the relationships among the different
components of the system can be represented as a
network, which may not always be the case. Addi-
tionally, the proposed methodology has only been
applied to a single case study, and its effectiveness
in other contexts or for other types of infrastruc-
ture systems remains to be explored. Finally, while
the network approach can help to identify critical
components and parameters of the system, it may
not provide specific information on how to improve
the system’s performance or reduce its vulnerabil-
ity. Therefore, further research is needed to address
these limitations and fully realize the potential of
the proposed methodology.

One area of future research is to extend the
methodology to include non-functional relation-
ships, such as logical operations, which could pro-
vide more detailed information about the model’s
behavior. Additionally, the network approach can
be used to optimize system performance and iden-
tify critical components by exploring different con-
figurations of the system’s parameters. Another
possible direction for future research is to extend
the methodology to account for uncertainty and
variability in the physical models and parameters,
as well as incorporate feedback mechanisms that
capture the system’s dynamic behavior over time.
Additionally, the methodology can be used to com-
pare different SoS models and assess their effec-
tiveness in capturing the behavior of infrastructure
systems. Furthermore, this approach can be ap-
plied to other types of complex infrastructure sys-
tems, such as communication networks or power
grids, to analyze their behavior and identify critical
components. Overall, the proposed work provides
a promising foundation for further research in the
field of infrastructure systems modeling and analy-

sis.
In conclusion, the proposed network approach

can be a valuable tool for analyzing the behavior
of complex infrastructure systems, identifying crit-
ical components, and assessing the system’s risk
and resilience under various operating conditions.
The insights gained from this approach can inform
decision-making processes and help improve in-
frastructure system design and development.
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