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1 | INTRODUCTION

Jiirgen Hackl

Abstract

Efficient representation of complex infrastructure systems is crucial for system-
level management tasks, such as edge prediction, component classification, and
decision-making. However, the complex interactions between the infrastructure
systems and their spatial environments increased the complexity of network
representation learning. This study introduces a novel geometric-based mul-
timodal deep learning model for spatially embedded network representation
learning, namely the regional spatial graph convolutional network (RSGCN). The
developed RSGCN model simultaneously learns from the node’s multimodal
spatial features. To evaluate the network representation performance, the intro-
duced RSGCN model is used to embed different infrastructure networks into
latent spaces and then reconstruct the networks. A synthetic network dataset,
a California Highway Network, and a New Jersey Power Network were used
as testbeds. The performance of the developed model is compared with two
other state-of-the-art geometric deep learning models, GraphSAGE and Spa-
tial Graph Convolutional Network. The results demonstrate the importance of
considering regional information and the effectiveness of using novel graph
convolutional neural networks for a more accurate representation of complex

infrastructure systems.

due to the complex interactions between the infrastruc-
ture systems and their spatial environments, the intricate

Real-world infrastructure systems can be represented and
interpreted as complex networks (Nocera & Gardoni,
2022). For instance, road networks can be represented by
using intersections as nodes and road segments as edges
(D. Xu et al., 2022). Similarly, power networks can be mod-
eled by representing buses as nodes and transmission lines
as edges (Maetal., 2021). Thereby, a critical feature of these
infrastructure systems is that they are embedded in spa-
tial environments, which in turn shape and constrain the
topologies of the systems (D. Zhang et al., 2022). However,

patterns and complex relationships within the topologies
of these complex systems are still unclear and difficult
to capture.

A comprehensive network representation and an under-
standing of the intricate patterns within these complex sys-
tems are needed for many real-world challenges (De Bacco
et al., 2017; Peixoto, 2019; N. Zhang & Alipour, 2023; Dun-
ton & Gardoni, 2023). For instance, previous studies have
captured the intricate connection patterns from partially
observed networks and used these patterns to rebuild
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the network structures of the road network. (Molinero &
Hernando, 2020; Dunton & Gardoni, 2023). The intricate
patterns within the networks are also vital for link fea-
ture prediction, which have been used to classify unknown
edges to their belonging layers in a multilayer infras-
tructure system (T. Cai et al., 2017; Z. Xu et al., 2020).
Furthermore, an efficient network representation tech-
nique can embed complex networks into a latent space,
which enhances the network’s properties analysis and
prediction (Fan et al., 2022; Mao et al., 2023).

Previous studies have developed a variety of methods
for network representation and intricate pattern under-
standing. The proposed models can be broadly classified
into two groups, the geometric algorithm-based methods
and geometric deep learning-based methods. The for-
mer approach used fitting the network connection with
some geometric-based equations, such as the stochastic
block models (Holland et al., 1983), random networks
(Pikovsky, 2018), small-world networks (Aksoy et al., 2019),
and scale-free networks (Zheng et al., 2012). However,
this approach is constrained by predefined criteria, such
as functions of distance and node degrees (Dettmann
& Georgiou, 2016). On the contrary, the latter approach
relaxed the constraints of predefined equations using neu-
ral networks, such as graph convolutional neural networks
(GCN) (Ding et al., 2024). However, most geometric deep
learning models treat the node features homogeneously,
often by simply concatenating all features into a single
vector. In the real world, the dimensions of node fea-
tures may vary depending on the physical types of the
features. On the other hand, studies about multimodal
GCN have been emerging, current studies are focusing on
image processing, knowledge graphs, molecular graphs,
and physical/chemistry networks (Ektefaie et al., 2023).
There remains a lack of studies investigating the training
of geometric deep-learning models to accommodate nodes
with varying feature dimensions.

This work addresses the limitations of traditional geo-
metric algorithms and integrates spatial environments into
complex network’s pattern discovery, a regional spatial
graph convolutional network (RSGCN) is presented for spa-
tially embedded networks. The introduced RSGCN model
is integrated into a novel partition-then-ensembling frame-
work for the network topology reconstruction task, which
is a challenging yet fundamental obstacle in applying net-
work science caused by the restricted access to data (Aksoy
et al., 2019). The network reconstruction framework can
benefit large-scale infrastructure system management in
various ways, such as system risk estimation and system
properties analysis (Vaccariello et al., 2020). In addition,
the results of network reconstruction can be effectively
used to evaluate the performance of the network repre-
sentation models, considering the complexity of ensuring
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similar graph properties between generated networks and
the original (Hackl & Adey, 2019).

In sum, this work advances the state of the art of
network representation, graph learning, and intricate
patterns discovery for spatially embedded networks as
follows:

1. This work derives an RSGCN that integrates fully con-
nected neural network layers and convolutional neural
network layers into the graph convolutional process.
Consequently, this novel RSGCN model is capable of
processing node features with varying dimensions.

2. The node’s regional information can be seamlessly
processed with traditional vector features, enabling a
more efficient capturing of intricate patterns of spa-
tially embedded networks. The results of this study
demonstrate that incorporating the node’s regional
information significantly enhances the modeling accu-
racy of the network connection compared to models
lacking this information.

3. The developed RSGCN model is integrated into a
partition-then-ensembling framework to address com-
puting challenges in large networks. The large network
is a common challenge in network science, consider-
ing the corresponding adjacency matrix is quadratically
increased with the increase of a node number. A large
network is first partitioned into batches of subgraphs for
the training and predicting process. The predicted sub-
graphs are then reassembled back to a large network.
This approach significantly improved computing effi-
ciency and enabled RSGCN to be applied to networks
of any size.

4. The developed RSGCN model is a generic network rep-
resentation learning method for spatially embedded
networks. The learned network representation can be
applied to other real-world tasks, such as traffic flow
prediction, edge prediction, and decision-making for
networked infrastructure systems.

The remainder of this article is organized as follows. Sec-
tion 2 presents the related works about network represen-
tation, intricate patterns discovery, and spatially embedded
networks. Section 3 introduces the main object of this
study, which is a spatially embedded network reconstruc-
tion task. Section 3 also introduces the developed RSGCN
model and the developed partition-then-ensembling net-
work reconstruction framework. After that, Section 4
provides details about testbeds and evaluation metrics
used in this study, including a synthetic network dataset,
a highway network dataset, and a power transmission
dataset. The corresponding results of the network recon-
struction are introduced in Section 5. Finally, discus-
sions and concluding remarks on this study are given in
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Sections 6 and 7. The developed codes are available on
Zenodo.!

2 | BACKGROUND

Various techniques have been proposed to capture the rep-
resentations and intricate patterns of complex networks.
For the network representations, DeepWalk (Perozzi et al.,
2014) and Node2Vec (Grover & Leskovec, 2016) are two
common traditional graph embedding methods. The for-
mer approach has been used for a multilayer infrastructure
network’s community detection and edge prediction (J. Li
et al., 2018). The latter approach has been used to discover
urban function regions using GPS-based trajectory data
(L. Cai et al., 2022). In addition to the network represen-
tation, notable infrastructure systems’ intricate patterns
have also been discovered using traditional geometric algo-
rithms. For instance, power systems of the same voltage
level have been found to have similar structure properties
with small-world networks, which is essential for gen-
erating synthetic electric infrastructure networks (Aksoy
et al., 2019). Single-parameter controlled hierarchical pla-
nar and spatial networks have also been proposed to mimic
the connection behaviors of road networks (Molinero &
Hernando, 2020). The complex relationships within the
infrastructure systems may not be fully represented by a
single geometric algorithm. A hybrid geometric algorithm
has also been proposed, which combines relative neigh-
borhood graphs, Gabriel graphs, and Erdés-Rényi random
graph (Hackl & Adey, 2019). The real-world power systems
have also been quantified and embedded into the tunable
spanning tree procedure, which is in turn used for gener-
ating synthetic power systems (Soltan & Zussman, 2016).
Lastly, physical information has also been considered in
developing the connection patterns of infrastructure sys-
tems. For instance, the slope and elevation information has
been considered for modeling the sewer system’s topology
(Dunton & Gardoni, 2023). The cost-optimal approach has
also been used for the generation of synthetic sewer and
wastewater systems (Moeini & Afshar, 2018; Chahinian
et al., 2019).

Recently, due to the successful progress of deep learn-
ing and neural networks, machine learning based methods
have been widely applied in different engineering domains
(Rafiei & Adeli, 2016, 2018), including the network rep-
resentation learning of complex networks (Lian & Xu,
2022; Che et al., 2022). Unlike conventional geometric-
based methods, geometric deep-learning models offer a
more flexible and end-to-end learning process, which
facilitates network representation and intricate pattern

Lhttps://doi.org/10.5281/zenodo.11584148
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discovery (Ding et al., 2024). The GCN was first pro-
posed for architecture in geometric deep-learning models.
After that, a large number of GCN variants have been
proposed for different tasks. Notable variants include the
GraphSAGE (Hamilton et al., 2017) and spatial graph con-
volutional networks (SGCN) (Danel et al.,, 2020). The
former architecture introduced advanced sampling strate-
gies for the node’s neighbors, resulting in a higher node
classification accuracy in multiple datasets. The latter
SGCN architecture first introduced the position features
of nodes into the learning process of a molecular classi-
fication task. GCN and its variants have been receiving
more and more attention in civil and infrastructure engi-
neering. For example, a GCN has been integrated into a
deep reinforcement learning process for the water system’s
restoration decision-making (Fan et al., 2022). More opti-
mal decisions can be obtained due to a better learning
process of using GCN. A graph attention architecture was
used to capture the spatial correlations within traffic net-
works for traffic flow prediction (Z. Wang et al., 2023).
In addition, the GCNs have been widely used in power
systems for fault detection, power outage prediction,
power flow simulation, and system control (Liao et al.,
2022).

Both traditional geometric-based algorithms and geo-
metric deep-learning models often treat complex networks
as abstract networks and ignore the networks’ embedded
spatial environments. For example, the reconstruction of
power networks is often based on their graph properties,
such as the node degree distribution, edge length distri-
bution, and network connectivity metrics (Aksoy et al.,
2019). However, the infrastructure systems are known
as spatially embedded (Dong et al., 2020). Advanced
network learning models need to efficiently represent
both the network’s spatial environments and its graph
properties.

In summary, combining the spatial environment of
the infrastructure system with more advanced geometric
learning methods is urgently needed for effectively cap-
turing the network representation and intricate patterns of
complex infrastructure systems.

3 | METHODOLOGY

3.1 | Preliminaries

In this study, the infrastructure systems are modeled
as spatially embedded networks, considering the strong
impacts of spatial environments on the network struc-
tures of these systems. Specifically, a spatially embedded
network G can be modeled by its vertices V, edges E,
and spatial environments S. The detailed definitions and
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symbols for the spatially embedded networks used in this
study are represented as follows.

1. A network G: A network G(V,E, S) which represents
the infrastructure systems, where the ¥ denotes the ver-
tices, E denotes the edges, and S denotes the spatial
environment. The corresponding adjacency matrix of
graph G can be represented by A.

2. A set of vertices V: v represents a vertice of critical
infrastructure networks, such as an intersection of road
networks or a connection point in power networks. v €
V.

3. Node features p € P, x € X, r € R: This study groups
the node features into three classes. The node position
feature refers to the coordinates of the nodes p, such as
the latitude and longitude of each node. The node point
feature refers to the vectorized features arranged in one
dimension, denoted by x, examples of node point fea-
tures include the social-economic factors that the node
is located. And, the node’s regional feature refers to the
two-dimensional regional data centered on each node,
denoted by r. Examples of this regional feature includ-
ing the regional elevation change in the real world. In
this study, the network’s spatial environment S consists
of P, X, R.

4. Aset of edges E: the edge e; ; is the connection between
a pair of vertices (v;,v j), such as a road segment or
a power line. The connection probability between two
vertices is dependent on S, which can be described by

P(e;;) = g(v;, vjl8).

The objective of this study is to reconstruct the topol-
ogy of spatially embedded networks by using the developed
RSGCN model as a surrogate connection function. Con-
nection functions are used to calculate the existence
probability of an edge between two vertices (Hackl & Adey,
2019). The objective can be mathematically described as
Equation (1), that is, with a given set of nodes and regional
information, the developed model aims to find a con-
nection function f(v;,v;|6) to reconstruct the adjacency
matrix A, so that the difference between the reconstructed
A and original adjacency matrix A can be minimized.

argmin ¢ (4,A)
’ W
A;j = f(vi,v18.8),

where A denotes the graph’s adjacency matrix and A is
the reconstructed adjacency matrix. €(, ) is the loss func-
tion. f(v;,vlS,0) is the connection function used to get
reconstructed adjacency matrix A, and 0 is the internal
parameters of function f.

/@ FAN and HACKL

Overall framework

3.2 |

Considering the large size and spatial constraints of infras-
tructure systems, it is impractical to assume that all
nodes within the infrastructure systems are potentially
connected. Predicting the existence of edges between all
pairs of nodes also requires intensive computing resources.
Therefore, a partition-then-ensembling framework is pro-
posed in this study as shown in Figure 1. First, the network
is partitioned into a set of subgraphs. Partial of the sam-
pled subgraphs are used for model’s training process, and
the rest of the subgraphs are used for testing. The final
network is built by ensembling the predictions of all sub-
graphs together. A detailed description of each step is given
in the following sections.

3.21 | Subgraph sampling

The graph sampling process is used to convert a single
large network into a set of subgraphs. This step is particu-
larly useful when working with large networks, as training
a batch of small subgraphs is much more efficient than
training a single large network. This step is also applicable
to real-world infrastructure systems, where edge lengths
are often constrained by physical space. Consequently, the
probability of connectivity between two nodes significantly
distanced apart from each other is extremely low.

In this study, the subgraphs of the large network are
sampled by using a fixed region, as shown by the dash
boxes in Figure 1a. The end nodes of edges that are par-
tially within the region are also included in the subgraph.
The selection of this window size is used to generate a set of
subgraphs with an appropriate number of nodes and edges,
which is dependent on the study area and edge length
distribution. In order to cover the whole network for the
final network rebuild, the sampling process is conducted
by using all the nodes as sampling centers. Therefore, the
number of subgraphs equals the number of nodes.

After sampling subgraphs from the large network, each
subgraph is converted into a complete graph (Figure 1b),
as all pairs of nodes within the subgraphs are potentially
connected. The edges of the complete graph are labeled by
either 1 or O for future training purposes. Edges existing in
the original network are labeled as 1, while the other edges
are labeled as 0.

3.2.2 | Edge prediction

The geometric-based deep learning models are used to
capture the intricate patterns within the network by
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FIGURE 1 Proposed framework.

embedding the nodes into a latent space. As introduced
in Section 3.1, three types of node features are considered,
that is, P, X, and R. These different types of spatial infor-
mation can be embedded into node features, which are
further used to predict the probability of edge existence
between all pairs of nodes in the subgraph. In other words,
geometric-based deep learning is used as a surrogate
model of traditional geometric algorithm-based connec-
tion functions (Dettmann & Georgiou, 2016). Figure 1c
shows a generic process of geometric deep learning mod-
els. The blue box represents generic geometric-based
deep learning models, and the node’s features are fed to
fully connected neural networks for the edge existence
prediction.

Unlike traditional graph learning models which only
process homogeneous and vectorized node features, the
developed RSGCN model processed node features with dif-
ferent dimensions simultaneously. Particularly, the devel-
oped RSGCN model processed the node’s position features
P by using a fully connected neural network, the node’s
regional feature R by using a convolutional neural net-
work, and the node’s point feature X by using another
fully connected neural network. The processed data are
then concatenated for further edge existence prediction.
Details about the developed RSGCN model are introduced
in Section 3.3.

3.2.3 | Network ensemble

The nodes of subgraphs are the subset of the nodes of
the original network. Therefore, the final network can
be rebuilt by ensembling the edge existence probability
of all edges in subgraphs. An edge may exist in multiple
subgraphs due to the sampling strategy. In this study,
the final network is rebuilt by using the averaged edge
existence probability. An edge is classified as existence
if the averaged existence probability is higher than a
predefined probability threshold. Consequently, this
developed ensembling process is highly efficient because

ALGORITHM 1 Pseudocode for ” strategy
Input: Predicted Graph G

Get connected components list g = [g1, g3, --- 8,]

for any (g,,,g,) in g do
Get edge list e = [e}, e,, ..., €, ], Where e; connected (g,,,, g,.)
Get existence probability of p as [p;, pss - s Pul
Connect edge based on e[argmax(p)]

end for

this strategy automatically excludes edges between nodes
that are extremely far apart.

It is important to note that the geometric deep learn-
ing based models predict the existence probability of all
edges simultaneously, which may not guarantee the rebuilt
network is a single connected component. A connected
component in graph theory indicates a graph whose all
pairs of nodes are connected via at least an available path.
To address this, a “probability relax” strategy is proposed,
which relaxes the existence probability threshold for cer-
tain node pairs if strong connectivity is required. The
pseudocode of the “probability relax” is provided below.
Specifically, when multiple connected components exist in
the predicted graph, the edges between these connected
components are established if the edges have the next high-
est existence probability, even if this probability is lower
than the threshold. The edge list e in Algorithm 1 can be
empty if none edges in the sampling set connected two
connected components.

This approach guarantees the rebuilt network is a single
connected component. However, many networks naturally
have multiple connected components, and this step may
not be necessary.

3.3 | RSGCN model

This section introduces the detailed architecture of the
developed RSGCN model. A unique contribution of this
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Output

A Message

Location FC Layer FC Layer

Region CL Layer PL Layer

Ilustrative architecture one single layer of RSGCN (The blocks with the same colors indicate the same dimensions. The

weights and bias of each block are independent. FC, fully connected; CL, convolutional layer; PL, pooling layer; [p;, p,], node’s position
feature; x, node point features; r, node regional features; (—), minus operator; ®, element-wise product.

RSGCN is its ability for multimodal fusion, whereas con-
ventional GCN only processes homogeneous vectorized
node features. A single layer of the RSGCN model is shown
in Figure 2, which visualizes how different types of data
are handled. A detailed introduction to the RSGCN model
is given in the following sections. The corresponding codes
can also be found on Zenodo.?

3.3.1 | Node position feature

Previous studies on spatial graph convolutional networks
have demonstrated the superiority of adding the node’s
position feature to other data sources (Danel et al., 2020).
This study uses the relative positions of neighboring nodes
over absolute positions. To process the node’s position
feature, two fully connected neural networks are utilized
for extracting the location feature. The extracted location
feature is represented by Equation (2).

B = oW ((pi—pj) W, 2)

where o is the ReLU activation function, p;, p; is the posi-
tion of nodes i and j, and WP is the weights of layers for
position feature processing.

3.3.2 | Node point feature

The node point feature represents the vectorized node
feature X, which is commonly a concatenated vector of

2 https://doi.org/10.5281/zenodo.11584148

various homogeneous one-dimensional features. This is
also the most widely used node feature in previous graph
convolutional learning. The dimension of this vector is
case specified. In order to process the node point feature,
a fully connected neural network is used, as shown in
Equation (3).

X =o(x;Wy), 3

where o is the activation function. ReLU activation func-
tion is used in this study. x; is the node point feature of
node i, and X is the processed feature, Wf denotes the
weights of a fully connected neural network for node point
feature processing.

3.3.3 | Node regional feature

Lastly, the regional feature of each node is a two-
dimensional matrix, as shown in Figures 1 and 2. The value
of the matrix is the spatial environment of that region.
A convolutional neural network is utilized for feature
extraction. The convolutional process can be mathemati-
cally described by Equation (4) (J. Wu, 2017). The striding,
padding, and flattening processes are omitted in Equa-
tion (4) for concise purposes. One fully connected layer
is appended to the convolutional layer so that the output
dimension of regional information can be the same as the
other layers.

F= o-<2 D Ky (ri = r,~)>, @
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where ¥is the convolved value of the output, K is the kernel
window, r; and r; are the input two-dimensional regional
information of nodes i and j. m; is the height of the input
data, and m, is its width. k, [ are the coordinates of the
elements in 7.

3.3.4 | Message passing

The processed information needs to be combined so that
the message can be forwarded from one node to its neigh-
bors. An element-wise multiplication is used to combine
the information (Equation 5), and the conventional graph
convolutional process is used for the message parsing
(Equation 6). The graph-convolved information is used to
replace the node’s point feature x and forwarded to the
next layer for computation.

m=pOXOT, (5)

where m is the transformed message. ® represents the
element-wise multiplication.

xl? = a(xf‘l + Z -ﬁj>, (6)

JEN;

where xl? is the convolved feature of node i at Ith
layer, o is the ReLU activation function, and m ¥
is the transformed message from neighbor nodes
(Equation 5).

Figure 2 shows a single layer of the developed RSGCN.
The final developed connection probability prediction
model includes two RSGCN layers as encoders and three
fully connected neural networks as decoders, as shown
in Figure Ilc. Specifically, the RSGCN layers are used to
embed the nodes’ features within the graph data into latent
space. After graph embedding, the node’s features of ends
of edges are concatenated and fed to fully connected neural
networks for decoding. The outputs of the fully connected
neural networks are the existence probabilities of all edges,
which are trained by the prelabeled edge data in the train-
ing set. The activation function between all hidden layers
is the ReLU activation function. The activation function
of the last layer is the Sigmoid activation function. The
prediction of edge existence probability can be defined in
Equation (7).

Ple,) =o(W: - (x; ®x;)) VG, j), ™
where o is the Sigmoid activation function. @ is a con-
catenating operator. P(e; ;) is the connection probability of
edgee; ;.
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3.4 | Performance evaluation

Three matrices are used to evaluate the performance
of the geometric deep-learning models in the network
reconstruction task, that is, F1 score, Kullback-Leibler
divergence (K-L divergence) of edge length distributions,
and K-L divergence of node degree distributions. The node
degree of a node is the number of edges connected to it.
Specifically, the F1 score is used to evaluate the prediction
accuracies by considering the network reconstruction task
as a binary classification problem. The outputs of the pre-
diction models are the existence probability of the edges
between all node pairs. An edge is classified as “existence”
if its probability is higher than a predefined threshold;
otherwise, it is classified as “nonexistence.” In this study,
this threshold is set as 0.5 for all case studies. Discussions
regarding the selection of this threshold can be found in
Section 6.

Equation (8) shows the definition of the F1 score, where
the true positive (TP) represents the edges that are orig-
inally existent and also predicted as existent. The true
negative (TN) represents the edges that were originally
nonexistent and also predicted as nonexistent. The false
positive (FP) represents the edges that are originally nonex-
istent but predicted as existent. And, the false negative
(FN) represents the edges that are originally existent but
predicted as nonexistent.

TP

Flscore = 1 ®)
TP + E(FP + FN)

The distribution similarities of edge lengths and node
degrees between the rebuilt networks and the original net-
works are evaluated using the K-L divergence (Cover &
Thomas, 2006). The K-L divergence measures the statisti-
cal distance between two probability distributions, which
can be calculated by Equation (9). It should be noted that
the K-L divergence is an asymmetric index. P(z) is the dis-
tribution of graph properties of the original graphs, that is,
the node degrees and edge lengths. And Q(z) is that of pre-
dicted graphs. The lower K-L divergence distance indicates
more similarities between the two distributions. 0 indi-
cates that the two distributions have identical quantities
of information.

P(z)

Dg(Pl|Q) = ZP(Z)log <@> ©)

4 | APPLICATION

Three graph datasets are used as testbeds, including a syn-
thetic generated spatially embedded network dataset, the
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ALGORITHM 2 Pseudocode for spatial environment
generation

Input: number of distributions ¢, distribution

covariances J, distribution mean values .

Output: S

S = 0(500,500)

fori € (0,t)do

Select a random location p within S.
N(plus, o) exp{==(p— )" 7 (p — p)}
S=S+N

end for
S—min(S)

max(S)—min(S)

_ 1 1
LSRRI

California Highway Network, and the New Jersey Power
Transmission Network. The synthetically generated spa-
tially embedded network dataset is used as an ideal test
scenario, where the graphs are strictly generated by their
distance and spatial feature similarities. On the other
hand, the California Highway Network and New Jersey
Power Transmission Network are networks collected from
real-world datasets, whose intricate connection patterns
are more complex than the synthetically generated dataset.

4.1 | Synthetic graph dataset

A synthetic spatially embedded graph generator is pro-
posed to generate sufficient spatially embedded graphs.
The generator includes two steps, spatial environment gen-
eration and graph generation. The spatial environment is
generated by summarizing multiple randomly generated
two-dimensional Gaussian distributions. The spatially
embedded graphs are generated based on the nodes’ dis-
tances and regional similarities. The pseudocode of spatial
environment generation is shown in Algorithm 2, and the
pseudocode of spatially embedded network generation is
shown in Algorithm 3. In Algorithm 2, a two-dimensional
environment S is first initialized by a zero matrix with
the size of 500 X 500. ¢t is a predefined number that con-
trols how many Gaussian distributions are utilized. ¢ and
« are a list of covariance values and mean values of these
two-dimensional Gaussian distributions. The & defines the
diagonal values of the covariance matrix. The lengths of ¢
and i equal the predefined number ¢. Each element of &
and j is a two-dimensional vector. For each time, a ran-
dom location p within the space S is selected, and then a
two-dimensional Gaussian distribution is generated. The
distribution is added to the environment space S. In the
end, the final environment S is normalized, so that the
maximum value of the environment is 1 and the minimum
value is 0.

/@ FAN and HACKL

ALGORITHM 3 Pseudocode for single spatially embedded
network generation

Input: number of nodes n, environment S
Output:spatially embedded graph G
fori € (1,n)do
p: = (U(0,500), U(0, 500))
end for
fori € (1,n)do
Ti = Siplo1-25: plob+2s,p11-25: p11+25]
for j € (i,n) do
rj= S[p,-[o]—zs:p,[0]+zs,p,[1]—zs:p,.[l]+zs]
if d(p;, pj) < 200 & std(r; —r;) < 0.1 then
¢y =1
else
€ij) =0
end if
end for
end for
G=(V,E)

The purpose of Algorithm 2 is to provide a repeatable
and straightforward way to randomly generate spatial envi-
ronments. However, it is worth noting there are many
alternative ways for the spatial environment generation,
such as Gaussian random field (Pichot, 2016).

The algorithm for single spatially embedded network
generation is shown in Algorithm 3. A predefined number
n is used to control the number of nodes in the net-
work. The nodes’ coordinates are randomly selected by
using a uniform distribution U(0, 500) so that all nodes
are located within the predefined space. For each node
v;, a regional value is determined by the window of
S| pi[0]-25: p;[0]425,pi[1]-25: p;[1]+25]- Therefore, the window
size of the regional information is 50. The edges between
all pairs of nodes are labeled as 1 if the node’s distance
is shorter than 200, and the standard deviation of the
difference of their regional values is lower than 0.1. Oth-
erwise, the edge is labeled as 0. The edges labeled with
1 represent real connect edges, and edges labeled with
0 represent the nonconnect edges. The final graph G is
an undirected graph with the aforementioned determined
nodes and edges.

A total of 1000 random spatially embedded graphs are
generated by repeating the Algorithms 2 and 3. The ran-
dom parameters used in the generation process are defined
in Table 1. Specifically, the numbers of Gaussian distribu-
tions are randomly selected from 10 to 30. This range is
subjectively defined to ensure the spatial space has enough
uncertainty. The two-dimensional Gaussian distribution’s
covariances o are randomly selected between 1000 to 8000
so that each distribution can have an appropriate impact
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TABLE 1 Parameters used for synthetic graph generation.
Name Description Value
t Number of distributions U(10,30)
log Covariance of distributions U(1000, 8000)
u Mean value of distributions U(0, 500)
n Number of nodes U(7,21)

Abbreviation: U, the uniform random.

500— @ \> 500
\ _— |

0 250 500 0 ] 250 500

@ (b)

FIGURE 3 Examples of generated spatial space and graph.

influence within the 500 x 500 space. The mean values u
are selected from O to 500 so that the centers of the gen-
erated distributions are located randomly within the given
space. Lastly, the node numbers of the graphs vary from 7
to 21. The numbers selected in Table 1 aim to generate spa-
tially embedded networks with reasonable node numbers
and edge numbers within a space of 500 X 500.

Figure 3 shows two examples of the graph generated
by visualizing only the edges labeled as “1.” As can be
seen, the generated graph may have multiple connected
components, such as Figure 3a. It may also be a single con-
nected component as shown in Figure 3b. In the generated
dataset, the edge number varies from 21 to 210, the node
degree varies from 0 to 15, and the edge Euclidean length
varies from 20.4 to 179.6.

4.2 | California Highway Network
A real-world infrastructure system, the California High-
way Network (F. Li et al., 2005), is tested. Figure 4a (left
side) shows the topology of the highway network and the
area’s surface elevation. In order to reduce the computa-
tional burden, the middle nodes of each single line are
removed. The cleaned road network contains 1252 nodes
and 1820 edges. The elevation data of the studied area is
obtained from the NASA Shuttle Radar Topography Mis-
sion (SRTM) dataset (JPL, 2013). The resolution of the
digital elevation data is 1 arc-second (approximately 30 m).
The network is sampled with a 20 km X 20 km win-
dow size and the regional node spatial information is
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sampled by using a 1.5 km X 1.5 km window, as shown
in Figure 4a (right side). In the final sampled subgraph
dataset, the node numbers of subgraphs range from 3 to
57, and the edge numbers range from 3 to 1596. Regard-
ing the considered features, the node’s position feature
is the node’s coordinates (lat and lon). The node’s point
feature includes the elevation value (L), the population
density (D), and the median house value (H) of where
the node is located. The node’s regional feature includes
the regional elevation value (r) within a 1.5 km X 1.5 km
window. The population density and median house value
information are obtained from the U.S. Census Bureau
(U.S. Census Bureau, 2024), which have been considered
for understanding the relationship between road networks
and socioeconomic factors in previous studies (Hu et al.,
2018).

4.3 | New Jersey Power Transmission
Network

Another real-world infrastructure system, power trans-
mission networks, is considered in this study to validate
the generic of the proposed model. Figure 4b shows the
transmission network used in New Jersey, USA. The trans-
mission network data are obtained from the Homeland
Infrastructure Foundation-level Data (HIFLD) (HIFLD,
2024), which contains the national-wide transmission
network varying from 69 kV up to 765 kV. The transmis-
sion network is relatively sparse compared to the road
network.

The same graph-cleaning strategy with the road net-
works is used, that is, removing the middle nodes of long
edges. After cleaning, the network contains 251 nodes
and 464 edges. In addition, the subgraphs of the power
system are sampled with a 25 km X 25 km window size.
The regional information of each node is sampled with a
1.5 km % 1.5 km window. An example of the sampling win-
dow is also shown in Figure 4, where the larger rectangular
is the subgraph sampling size. The node’s position features,
the node’s point features, and the node’s ‘regional spatial
features have the same definitions and data sources as the
road network.

Table 2 shows the data sources and data types used for
the California Highway Network and New Jersey Power
Transmission Network. Specifically, the node’s position
feature is the node’s coordinates, i.e. the latitude and
longitude ([lat, lon]). The node’s point features are the one-
dimensional features located at the node’s position, that is,
the node’s point elevation value (L), the population density
(D), and the median house value (H). The node’s regional
feature is the elevation change within a region, denoted
by r.
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(1.5km, 1.5km)

(a) California Highway Network

FIGURE 4
Network.
TABLE 2 Node feature for network generation.
Symbol  Description Source Type
lat Node latitude coordinate ~ Original map P
lon Node longitude Original map P
coordinate
r Node’s regional elevation NASA SRTM R
L Node’s point elevation NASA SRTM X
D Population density of the U.S. Census X
node’s location Bureau
H Median house value U.S. Census X
Bureau

Abbreviations: D, population density; H, Median house value; L, node’s point
elevation; lat, node’s latitude; lon, node’s longitude; NASA SRTM, NASA
Shuttle Radar Topography Mission (SRTM) dataset; P, the node’s position
feature; R, the node’s regional feature; r, regional elevation; X, the node’s
point feature.

4.4 | Network reconstruction models

Two geometric deep learning models are used as bench-
marks for comparison purposes, that is, the GraphSAGE
model (Hamilton et al., 2017) and the SGCN model (Danel
et al., 2020). The considered models are trained with the
same subgraph data but utilize the node features in distinct
ways. Specifically, the GraphSAGE model utilizes node
position and point spatial feature homogeneously by con-
catenating these values as a single vector, which can be
represented by [P, X]. On the contrary, the SGCN model
separates the processing of node position and point spa-
tial features. Node coordinates are processed by a fully
connected neural network, while the node’s point fea-
tures are processed by another fully connected neural
network. As a result, the node feature can be represented
by two separate vectors [P] and [X]. Previous studies have

(b) New Jersey Power Network

California Highway Network (left: topology of road network. right: illustrative of a random sample) and New Jersey Power

TABLE 3 Feature handling.
Model P & R
GraphSAGE FC (P and X concatenated) -
SGCN FC FC -
RSGCN FC FC CNN

Abbreviations: CNN, convolutional neural network; FC, fully connected neu-
ral network; RSGCN, regional spatial graph convolutional network; SGCN,
spatial graph convolutional networks.

demonstrated that the SGCN model has outperformed tra-
ditional GCNs in multiple MoleculeNet benchmarks (Z.
Wu et al., 2018). As introduced in Section 3, the RSGCN
model handled the node’s position feature P, regional fea-
ture R, and point feature X independently. Table 3 outlines
the key differences in the feature-handling approaches of
considered models.

The final architectures and hyperparameters of each
model are determined by avoiding significant overfitting or
underfitting. For the GraphSAGE model, two GraphSAGE
layers are used for embedding the network into a latent
space, which is named as encoding process. After network
encoding, two fully connected neural networks are used
for estimating the edge existence probability based on the
embedded node features, which is named as decoding pro-
cess. For the SGCN model, each SGCN layer contains two
fully connected neural networks. One of the neural net-
works is used to procedure the node’s position feature, and
the other neural network is used to procedure the node’s
features in the graph convolutional process. Three SGCN
layers are used for the network encoding, and another
three fully connected neural networks are used for the
network encoding. Lastly, the developed RSGCN model
contains two developed RSGCN layers for encoding and
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A= L=

(a) Ground Truth (b) GraphSAGE

FIGURE 5

1.0).

TABLE 4 Inputsand parameter numbers of each model.
Model Input format
GraphSAGE [lat,lon, L, D, H]

SGCN [lat,lon] + [L, D, H]
RSGCN [lat,lon] + [L,D,H] + [r]

Abbreviations: D, population density; H, Median house value; L, node’s point
elevation; lat, node’s latitude; lon, node’s longitude; r, regional elevation;
RSGCN, regional spatial graph convolutional network; SGCN, spatial graph
convolutional networks.

three fully connected neural networks for decoding, as
introduced in Section 3.3. Table 4 shows the final consid-
ered features of each model used in highway road network
and power network. It can be seen the GraphSAGE model
concatenates all inputs as a vector and processes them
using fully connected neural networks. For the RSGCN
model, the input two-dimensional matrix size is 50 X 50,
and the convolutional kernel size is 3. The final embedded
node feature size is 128. All three models are trained for
600 epochs. Detailed parameters and configurations of the
considered graph learning models can also be found in the
GitHub repository.

5 | RESULTS

5.1 | Synthetic graph dataset
The randomly generated synthetic graph is a set of spatially
embedded networks as described in Section 4.1. The node’s
point feature is the spatial environment value where the
point is located. The node’s position feature is the point’s
coordinates, and the node’s regional spatial feature is a
50 x 50 spatial window size where the node is centered.
The GraphSAGE, SGCN, and RSGCN models are trained
with 70% of the generated graphs and then tested by the
remaining 30% graphs. Figure 5 shows a random recon-
structed graph from the testing set, where only edges with
existence probabilities higher than 0.5 are shown. Figure 5a
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(d) RSGCN

(c) SGCN

Rebuilt results of the synthetic graph (colors indicate the predicted edge existence probability, color bar ranges from 0.5 to

shows the original graph. This particular graph sample
contains 55 edges and 11 nodes. The reconstructed graph
by GraphSAGE (Figure 5b) shows that some of the edges
are rebuilt with relatively low confidence. There are also
more edges established compared to the original graph.
Similar issues also happened to the SGCN model as shown
in Figure 5c. Several nonexistent edges were also pre-
dicted as existent edges, such as the edge between two
connected components. Compared to the GraphSAGE and
SGCN models, the RSGCN predicted the edge existence
with 100% accuracy for this sample.

The predicted distributions of edge lengths and node
degrees for all graphs in the testing set are compared in
Figure 6. The bars filled with solid colors represent the
data in the testing set, which also serves as the ground
truth. The bars marked with various hatch patterns cor-
respond to the results predicted by using all considered
models, respectively. It can be observed that the graphs
reconstructed by GraphSAGE and SGCN tend to have more
edges compared to those reconstructed by RSGCN, with
most bins being higher than in the original data. Moreover,
the networks rebuilt by the GraphSAGE and SGCN mod-
els exhibit fewer nodes with small degrees and more nodes
with higher degrees, as demonstrated in the bottom row
of Figure 6. In contrast, the graphs rebuilt by the RSGCN
model show edge length and node degree distributions
more similar to those of the original data.

The performance of all three models on both training
and testing sets can also be quantitatively evaluated, as
shown in Table 5. The model with the best performance
is indicated by the bold values. The RSGCN model out-
performed the other models in all considered metrics.
Particularly, the RSGCN achieved an overall prediction
accuracy of 94%, which is 5.1% higher than the SGCN
model and 6.65% higher than the GraphSAGE model in
the testing set. In addition, the K-L divergence values for
both edge length distribution and node degrees are much
smaller than those of the GraphSAGE and SGCN models.
A smaller value of K-L divergence indicates more similar
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FIGURE 6 Synthetic dataset comparison. RSGCN, regional

spatial graph convolutional network; SGCN, spatial graph
convolutional networks.

TABLE 5 Comparison of models’ performance on synthetic
graph set.
Model F1 score K-L(E) K-L(N)

Train Test Train Test Train Test
GraphSAGE  0.18 019 0.007 0.005 0.03 0.04
SGCN 0.89 0.88 0.002 0.003 0.14 0.17
RSGCN 096 094 de* le? 3e?  4e?
Note: The bold values represent the best performance.
Abbreviations: K-L(E), Kullback-Leibler (edge length distribution); K-L(N),

Kullback-Leibler (node degree distribution); RSGCN, regional spatial graph
convolutional network; SGCN, spatial graph convolutional networks.

distributions. The model shows a slightly better perfor-
mance on the training set. However, the performance
differences between the training and testing sets are
minor, indicating appropriate model parameters have
been selected.

5.2 | California Highway Network

In addition to testing the models in a synthetically gener-
ated dataset, the GraphSAGE, SGCN, and RSGCN models
are also used to rebuild a real-world infrastructure system:
a California Highway Network. The complete highway net-
work is partitioned into 1252 subgraphs. Seventy percent of
the subgraphs are used for training, and 30% are used for
testing. Table 6 shows the final performance of the train-
ing set and testing set of each model, respectively. The
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TABLE 6 Performance on road network’s training and testing
sets.
Model F1 score K-L(E) K-L(N)
train test train test train  test
GraphSAGE  0.55 0.56 0.16 0.14 0.47 0.52
SGCN 0.78 0.77 0.007 0.008 0.8 0.19
RSGCN 0.90 089 0.008 0.007 0.16 0.19

Note: The bold values represent the best performance.

Abbreviations: K-L(E), Kullback-Leibler (edge length distribution); K-L(N),
Kullback-Leibler (node degree distribution); RSGCN, regional spatial graph
convolutional network; SGCN, spatial graph convolutional networks.

results show that the models performed relatively similarly
on both the training and testing sets, indicating that they
are neither overfitting nor underfitting. Furthermore, the
RSGCN model significantly outperforms the SGCN and
GraphsSAGE model based on the F1 score. The table also
shows that the K-L divergences of edge and node distri-
butions in the predicted results of the RSGCN model are
similar to those of the SGCN model. This similarity may be
partly attributed to the fact that all subgraphs in the testing
set have similar node degrees and edge lengths, resulting in
minor differences in distributions.

Based on the sampling strategy, it is understandable
that edges may overlap between the training set and test
sets, even though they are in subgraphs with different
structures. In order to better evaluate the model’s perfor-
mance, this study also identified 2985 edges that only exist
in the testing set. These “nonoverlap” edges include 293
edges labeled with 1 and 2692 edges labeled with 0. The
model accurately predicted 269 edges labeled with 1 and
2691 edges labeled with 0. The overall F1 score for these
“nonoverlap” edges is 0.85.

Figure 7 shows the original highway network and the
rebuilt networks. The color of each edge represents the
predicted existence probabilities. The edges connected by
the “probability relax” strategy are labeled with a value
of 0.5, which is the lowest connection probability shown
in the figures. Figure 7b-d shows the networks recon-
structed by GraphSAGE, SGCN, and RSGCN, respectively.
It can be seen the GraphSAGE model only predicted a few
edges whose existence probabilities are higher than 0.5.
As a result, the rebuilt graph is very sparse and cannot
accurately reflect the real network topology pattern of the
original network. Compared to the GraphSAGE model, the
SGCN model predicts more existing edges, as shown in
Figure 7c. The result demonstrates the benefits of separat-
ing the process of the node’s point spatial features and the
node’s position features. However, many edges, especially
the edges located in the middle area of the graph, were not
accurately reconstructed.

Lastly, the RSGCN significantly outperformed the
GraphSAGE and SGCN models, as shown in 7d. A total
of 19 edges were established based on the “probability
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(a) Original network (b) GraphSAGE

FIGURE 7
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FIGURE 8 Road network’s edge length distribution (upper
row) and node degree distribution (bottom row) of different models.
RSGCN, regional spatial graph convolutional network; SGCN,
spatial graph convolutional networks.

relax” strategy. Most of the edges were predicted accu-
rately by the RSGCN model. In addition, the RSGCN
model successfully rebuilt the long and short edges of the
original graph. Although the confidence about the edge
existence is relatively low in the middle area, the overall
predicted existence probabilities are higher than those of
the other models.

In order to obtain a more detailed comparison, the
edge length and node degree distributions of all predicted
graphs are compared in Figure 8. The edge lengths are
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(c) SGCN

(d) RSGCN

Road modeling results. RSGCN, regional spatial graph convolutional network; SGCN, spatial graph convolutional networks.

TABLE 7 Comparison of models’ performance on the full road
network.
K-L K-L T
Model F1 (Edge) (Node) (min)
GraphSAGE 0.561 0.137 0.523 43
SGCN 0.781 0.008 0.387 62
RSGCN 0.895 0.001 0.047 136

Note: The bold values represent the best performance.

Abbreviations: K-L (Edge), Kullback-Leibler (Edge); K-L (Node), Kullback-
Leibler (Node); RSGCN, regional spatial graph convolutional network; SGCN,
spatial graph convolutional networks; T, time of the training process in min-
utes.

Euclidean distance of nodes’ coordinates. It can be seen
that both GraphSAGE and SGCN models tend to overes-
timate short edges but slightly underestimate long edges.
These two models also significantly underestimate nodes
whose node degrees are 3. On the other hand, the RSGCN
presents a better representation of the original graph’s edge
length and node degree distributions.

The graph modelings’ performance on the full road net-
work is shown in Table 7. The prediction accuracy of the
RSGCN is 89.5%, which is 33.4% higher than the Graph-
SAGE model and 11.4% higher than the SGCN model.
Meanwhile, the K-L divergence of the edge length and
node distribution is also significantly smaller. The results
further demonstrate the necessity of considering regional
spatial information for spatially embedded graphs.

5.3 | New Jersey Power Transmission
Network

The New Jersey Power Transmission Network serves as an
additional testbed for validating the generality of the devel-
oped model. The GraphSAGE, SGCN, and the developed
RSGCN were trained and tested by 70% and 30% sampling
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FIGURE 9 NI transmission network. RSGCN, regional spatial graph convolutional network; SGCN, spatial graph convolutional

networks.
TABLE 8 Performance on NJ Power Network’s training and
testing sets.

Model F1 score K-L(E) K-L(N)

Train Test Train Test Train Test

GraphSAGE  0.11 0.11 0.20 0.21 2.20 3.1

SGCN 0.65 0.51  0.008 0.010 0.21 0.32

RSGCN 0.91 0.89  0.001 0.002 0.02 0.03
Abbreviations: K-L(E), Kullback-Leibler (edge); K-L(N), Kullback-Leibler

(node); RSGCN, regional spatial graph convolutional network; SGCN, spatial
graph convolutional networks.

graphs. Table 8 shows the models’ performance in both
training and testing sets, which demonstrates no signifi-
cant overfitting or underfitting in the training process. The
introduced RSGCN model also outperforms the other two
models in all metrics.

Similar to the case study of California Highway Net-
work, a total of 662 “nonoverlap” edges are identified,
including 63 edges labeled with 1 and 599 edges labeled
with 0. The model accurately predicted 61 edges labeled
with 1 and 586 edges labeled with 0. The overall F1 score
for unseen edges is 0.89.

The rebuilt networks of the New Jersey transmission
line by using all considered models are shown in Figure 9.
Figure 9a shows the original transmission network after
simplifying, and Figure 9b-d shows the rebuilt transmis-
sion topologies by the GraphSAGE, SGCN, and RSGCN
models, respectively. Figure 9b shows that the GraphSAGE
model struggles to accurately model the network topology.
Almost all connections are made based on the “probabil-
ity relax” strategy, rather than being directly inferred by
the model. This issue is likely because of the highly imbal-
anced edge labels in the training set, which makes the
model tend to predict most edges as “nonexistent.” As a
result, the reconstructed network is significantly sparser
compared to the original map.

TABLE 9 Comparison of models’ performance on NJ power
network.
K-L K-L T
Model F1 (Edge) (Node) (min)
GraphSAGE 0.12 0.270 0.509 28
SGCN 0.52 0.102 0.284 47
RSGCN 0.90 0.002 0.016 98

Note: The bold values represent the best performance.

Abbreviations: K-L (Edge), Kullback-Leibler (Edge); K-L (Node), Kullback-
Leibler (Node); RSGCN, regional -spatial graph convolutional network;
SGCN, spatial graph convolutional networks; T, time of the training process
in minutes.

The SGCN model presents a slight improvement in
network reconstruction performance compared to Graph-
SAGE by establishing more edges. However, it also gen-
erates more edges that should not exist. Consequently,
the predicted edges cannot accurately reflect the origi-
nal network’s structure. Some nodes have extremely high
node degrees, such as nodes in the bottom left and upper
right regions. The SGCN model also struggles to accurately
establish short edges as shown in Figure 9c.

Compared to the SGCN and GraphSAGE models, the
RSGCN model presents a better network reconstruction.
The rebuilt network accurately reflects the connection
patterns of the original network, as shown in Figure 9d.
A total of seven edges are established based on the
“probability relax” strategy. In addition, there are a large
portion of the edges are predicted with relatively high
confidence, and only a few edges are predicted with a
confidence of lower than 70%. However, some edges are
mispredicted even though their existence probabilities
are high, such as some short edges located in the top
right region.

Table 9 summarizes the quantitative evaluation results
of all models on the New Jersey Power Network. It can
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be seen that the GraphSAGE model failed to predict
most of the edges, resulting in a low F-1 score and high
K-L divergence. The performance of the SGCN model
was slightly improved to the GraphSAGE model, but the
F1 score is only around 0.52. Compared to the SGCN
and GraphSAGE models, the RSGCN model’s F1 score
achieved 0.907, demonstrating the superiority of the model
and the importance of considering regional information.

6 | DISCUSSION AND LIMITATIONS

The results show that the developed RSGCN model
presents a higher topology reconstruction accuracy com-
pared to the GraphSAGE and SGCN models. The results
also indicate a higher improvement when applying the
RSGCN model to real-world datasets. Part of the reason
can be attributed to the complexity of the testbeds. The
intricate patterns within synthetic networks are easier
to capture, leading to similar performance levels among
all considered models. Furthermore, the design, manage-
ment, and operation of real-world infrastructure systems
are often constrained by geographical factors such as ele-
vation changes and land usage (Y. Wang et al., 2017). Incor-
porating the regional elevation change into the model for
highway networks and power networks thereby enhanced
the model’s accuracy. In addition, it is worth noting that
the selection of node regional features should have a direct
influence on the network structure, otherwise, additional
noise may be introduced into the RSGCN training process.

A few factors have been subjectively selected in this
study in order to evaluate the performance of the proposed
RSGCN model and network reconstruction framework. To
make this study more generic for the other applications,
the influences of these factors on the model performance
are discussed below.

The influence of sampling strategy: A higher accuracy
was also observed in the rebuilt highway and power net-
works. The results are partially caused by the ensembling
process, as all of the subgraphs in the training set and
test set are used. The machine learning models usu-
ally have better accuracy in the training set due to the
inherent learning mechanisms. However, the results can
still demonstrate good performance when comparing the
results between the training and testing sets as shown
in Tables 6 and 8. In addition, the proposed model also
successfully established 2820 of 2985 “nonoverlap” edges
in the California Highway test set and 647 out of 662
“nonoverlap” edges in the NJ Power Network. Lastly, the
performance of the proposed model in rebuilding synthetic
graphs on the testing set further validates its effectiveness,
as none of the graphs in the testing set were seen during
the training process 5.
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The influence of partition and regional window sizes: The
partition size has a major influence on the sizes of sampled
graphs. A smaller partition size leads to a smaller sampled
graph, resulting a less training time and computational
resources required. However, it will also exclude many
edges that are longer than the size, lowering the final net-
work reconstruction accuracy. On the other hand, a larger
subgraph size requires more computational resources,
such as graphics processing unit (GPU) memory. It will
also increase the learning complexity as the more nodes
of a subgraph, the more edges exist in the corresponding
fully connected networks. Compared to the partition size,
the regional window size influences how large elevation
changes around each node should be considered. A larger
window size allows more spatial changes can be consid-
ered but also requires more computational resources for
the training process. The partition sizes used in this study
are selected based on the longest edges in each dataset. The
window sizes are determined based on the digital elevation
model resolution and computing resources.

The influence of probability threshold: In this study, a
probability existence threshold of 0.5 is selected. This
threshold is selected to provide an unbiased initial balance
point considering the edge existence prediction is a binary
classification task. Lowering this threshold allows more
edges to be classified as “connected” but introduces more
false positive errors. On the other hand, increasing this
threshold will lead to more type II errors. In reality, mini-
mizing which type of error is often subjective and requires
a trial-and-error process.

The broad application of the proposed RSGCN model:
The developed RSGCN model is also a generic network
representation model, which can be applied to a wide
of real-world applications when using different models
to decode the embedded node features. For example, an
accurate network representation is the key to traffic pre-
diction in a traffic network (Tang & Zeng, 2022). It can also
make more optimal decisions for networked infrastructure
systems when replacing conventional artificial neural net-
works with more advanced graph neural networks (Chen
etal., 2021). Lastly, a better network representation can also
benefit from more accurate edge feature prediction (Yuan
etal., 2022).

Although the RSGCN model outperforms conventional
geometric-based deep learning algorithms, there are some
limitations regarding the model itself and the network
generation framework.

The guarantee of network connectivity: It should be noted
that the proposed RSGCN model and network modeling
framework are used to predict the connectivity probability
between all pairs of nodes at the same time. When using
a threshold to determine the edge existence, the network
connectivity may not be able to be strictly guaranteed like
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graph-theory-based methods (Aksoy et al., 2019). Such
an inability might limit the applicability of the proposed
model in real-world infrastructure networks. A variety
of strategies can be considered as potential solutions. In
addition to the “probability relax” strategy proposed in this
study, lowering the global probability threshold can also
increase the predicted graph connectivity. In addition,
incorporating the predicted edge existence probability
into traditional network modeling algorithms can also
be a potential solution, such as small-world graphs or
physical-informed planning strategies (T.-Y. Zhang et al.,
2024). Fast and efficient machine learning algorithms
are emerging in recent years, such as dynamic ensemble
learning and dynamic classification algorithms (Rafiei &
Adeli, 2017; Alam et al., 2020). More advanced methods
will be investigated in future studies.

Lack of node generation in the framework: Another
limitation of this study is it does not include node gener-
ation in the network modeling. This study assumes these
node locations are available, some previous studies also
used similar assumptions (Ahmad et al., 2022; Sitzen-
frei et al., 2020). However, it is known that the nodes’
locations are also constrained by their spatial space, and
generating nodes is a critical topic in network modeling
(Vaccariello et al., 2020). Future studies will include the
node generation process.

High computational demand due to multimodal data:
The parameter number of the proposed RSGCN model is
significantly larger than that of the GraphSAGE model
and SGCN model. Four A100 GPUs were used for the
models’ training. The training process took around 2 h
for the California Highway Network and around 1.5 h
for the NJ Power Network. The main reason for the
different training times is caused by the different num-
ber of subgraphs. However, it should be noted that due
to the similar sampling window size and considered
features, the utilized GPU memory has no significant
difference when training these two networks. Increasing
the number and dimensions of considered features will
increase the memory needs. Future work will focus on
improving the learning efficiency and reducing the model
size.

Limited considered features: Lastly, for illustration pur-
poses, only the node coordinates, surface elevation, pop-
ulation density, and median house value were used for
the network reconstruction. It is known that a large
number of factors may influence the network topology,
especially socioeconomic and land use factors. Identify-
ing the optimal factors for network structure prediction
is still challenging. Further studies will investigate the
importance of different factors for improving the topology
prediction performance.
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7 | CONCLUSION

A novel geometric-based deep learning architecture, the
RSGCN model, was developed for complex network repre-
sentation and intricate pattern capturing. The introduced
model can process node features with different data
dimensions, such as the vectorized node’s position fea-
ture, vectorized node’s point feature, and two-dimensional
node’s regional feature. The developed RSGCN model was
integrated with a partition-then-ensembling framework
and was used for predicting the edge existence probabil-
ity within the spatially embedded networks. In addition
to the RSGCN model, two other geometric-based deep
learning models, GraphSAGE and SGCN, were used as
benchmarks. The results have demonstrated the superior-
ity of the developed RSGCN model and the importance
of considering regional features for spatially embedded
network representation. The RSGCN model outperformed
the second-best model, the SGCN model, by 5.1%, 11.4%,
and 38.0% in the perspective of F1 scores. Furthermore,
the developed partition-then-ensembling framework effi-
ciently addressed the challenge of large networks by
sampling a large network into a batch of subgraphs.

Although the RSGCN model was only used for net-
work reconstruction, it is essentially a technique for
graph representation and network intricate patterns cap-
ture. Considering its ability to leverage different types of
node features, the proposed method can be applied to
other challenges in infrastructure systems. Future stud-
ies will investigate the wide applications of the proposed
RSGCN model.
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